Introduction to CMOS RF Integrated Circuits Design

VII. Power Amplifiers
Outline

• Functionality
• Figures of Merit
• PA Design
 Classical Design (Class A, B, C)
 High-Efficiency Design (Class E, F)
• Matching Network
• Linearity
• T/R Switches
PAs and TRs Switching in Transceiver

Matching Networks

BPF

Rx

T/R Switch

PA

Tx
Functionality of PAs

• To Amplify and Deliver Required Signal Power to Antenna at Frequency of Interest
• To Achieve Desired Output Power with Maximum Power Efficiency
• To Provide Output Impedance Matching to Antenna
• To Have Clean Spectrum Not to Affect Receivers
Figures of Merit of PAs

• Frequency
• Output Power
• Power Efficiency
• Linearity (P-1dB, IIP3, ACPR)
• Conversion Gain
• Spur
Output Power

\[P_o = \frac{V_{o,rms}^2}{R_L} = \frac{V_{o,amp}^2}{2 R_L} = \frac{V_{o,p-p}^2}{8 R_L} \]

• For a Load of 50 Ohm, Need an Output Amplitude of 10 V to Achieve an Output Power of 1W!
• For a Low Supply, Need Small Load for Large Output Power, i.e. A 3.3-V Output Amplitude Can Only Deliver 1W to a Load of 5 Ohm!
Output Power

• Need an Output Impedance Matching to Convert 50 Ω to a Smaller Load!
• As Supply and Load Decrease, PA Would Need to Deliver Much Larger Current
• Loss Due to Parasitic (R, L) Becomes Significant => Low Efficiency!
Power Gain and Efficiency

\[A_P = \frac{P_o}{P_{in}} \]
\[\eta = \frac{P_o}{P_{DC}} \]
\[PAE = \frac{P_o - P_{in}}{P_{DC}} \]

• With a High Power Gain \(A_P \), Drain Efficiency \(\eta \) is Approximately the Same as Power-Added Efficiency \(PAE \)
Linearity

• 1-dB Compression Point
• Intermodulation Intercept Point IIP3
• Conventional Definition and Measurement Not Sufficient Because Most PAs Operate Near 1-dB Compression Point for Maximum Efficiency => Higher-Order Distortion Becomes Significant and Needs to Be Included => Adjacent-Channel Power Rejection ACPR
Adjacent-Channel Power Rejection (ACPR)

• A Modulated Signal is Applied to Include High-Order Distortion
• ACPR is Defined and Measured as the Power of the Adjacent Channel Relative to the Carrier
Output Power \(\sim 0 - 35 \, \text{dBm} \)
Efficiency \(\sim 30 - 60 \% \)
Gain \(> 20 \, \text{dB} \)
Linearity, IMD \(-30 \, \text{dBc} \)
Linearity, ACPR \(-25 \, \text{dBc} \)
Spurs \(< -50 \, \text{dBc} \)
Supply Voltage \(\sim 1.8 \, \text{V} \)
Current \(> 300 \, \text{mA} \)
Linear Power Amplifiers

- Linear Relationship between Input and Output Signals
- Critical for Applications with Non-Constant Envelope Modulation Scheme
- Classical Linear PAs Include Class-A, Class-B, and Class C
- Classification is Made Based on Conduction Angle, Defined as the Fraction of Period when Active Device is On

![Graph showing original signal spectrum and spectrum at output of nonlinear PA](image)
Non-Linear Power Amplifiers

Constant envelop modulation

Nonconstant envelop modulation

GMSK
FSK

Nonlinear PA
High Efficiency

BPSK
QPSK
QAM

Linear PA
Low Efficiency
Conduction Angle

\[P_o = \frac{\theta - \sin \theta}{1 - \cos(\theta/2)} \]

\[\eta = \frac{P_o}{P_{DC}} = \frac{1}{4} \frac{\theta - \sin \theta}{\sin(\theta/2) - (\theta/2) \cos(\theta/2)} \]

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>360</td>
<td>180</td>
<td>0</td>
</tr>
<tr>
<td>(\eta)</td>
<td>50%</td>
<td>78%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Conduction Angle

Class-A Power Amplifiers

\[v_{IN}(\theta) \quad v_D(\theta) \quad v_{OUT}(\theta) \]

\[i_D(\theta) \quad i_{OUT}(\theta) \]

\[V_{DD} \quad RFC \]

\[V_{DD} \quad RFC \]

\[v_{D}(\theta) \quad v_{OUT}(\theta) \]

\[v_{IN}(\theta) \quad V_{TH} \]

\[v_D(\theta) \quad i_D(\theta) \]

\[v_{OUT}(\theta) \quad i_{OUT}(\theta) \]
Class-A Power Amplifiers

• Single Transistor as Amplifier to Minimize Loss and Maximize Efficiency
• Transistor Always Conducts => Conduction Angle is 360 Degrees
• Highest Linearity
• Lowest Efficiency
Class-A Power Amplifiers

- RF Choke LC Provides Constant Bias Current Source While Doubling Output Voltage and Efficiency (as Compared to Resistive Load)
- Capacitor C_b Blocks DC Current from Flowing to the Output \Rightarrow No DC Power Consumption for the Load
- Resonant Tank Filters Harmonics Due to Non-Linearity to Obtain Single Tone at Output
Class-A Power Amplifiers

- For Resistive Load, Maximum Output Voltage is Limited to V_{DD}
- For Inductive Load, Maximum Output Voltage is Increased to $2V_{DD}$
 For Same Loading and Same Supply, Output Power is Increased By 4 Times and Efficiency is Increased By 2 Times
 For Same Loading and Same Output Power, Supply Can Be Reduced By 2 Times
Class-A PA with Resistive Load

\[P_{o,\text{max}} = \frac{V_{o,\text{max}} I_{o,\text{max}}}{2} \]

\[= \frac{V_{DD} I_B}{4} \]

\[P_{\text{DC}} = V_{DD} I_{D,\text{ave}} = V_{DD} I_B \]

\[\eta_{\text{max}} = \frac{P_{o,\text{max}}}{P_{\text{DC}}} = 25\% \]
Class-A PA with Inductive Load

\[P_{o, \text{max}} = \frac{V}{2} I_{o, \text{max}} \]

\[P_{o, \text{max}} = \frac{V_{DD} I}{2} \]

\[P_{DC} = V_{DD} I_{D, \text{ave}} = V_{DD} I_B \]

\[\eta_{\text{max}} = \frac{P_{o, \text{max}}}{P_{DC}} = 50 \% \]
Class-B Power Amplifiers

\[
P_{RFout} = \frac{V_{om}^2}{2R} \leq \frac{V_{DD}^2}{2R}
\]

\[
I_{DC} = \frac{1}{2\pi} \int_{0}^{\pi} I_{D} |\sin \theta| d\theta = \frac{2I_{D}}{\pi} = \frac{2V_{om}}{\pi R}
\]

\[
\eta_{Drain} = \frac{P_{RFout}}{P_{DC}} = \frac{\frac{V_{om}^2}{2R}}{\frac{2 V_{om}^2}{\pi R V_{DD}}} = \frac{\pi V_{om}}{4 V_{DD}} \leq \frac{\pi}{4} \approx 0.785
\]
Class-B Power Amplifiers

• Two Transistors as Push-Pull Amplifier
• Transistors Conduct Only HALF CYCLE => Conduction Angle is 180 Degrees
• Higher Efficiency Compared to Class-A
• Compromised Linearity
• Due to Speed Limitation of PMOS, Two NMOS Can Be Used In Parallel with Their Currents Combined By a Transformer
Class-B Power Amplifier

\[P_{o,\text{max}} = \frac{V_{o,\text{max}} I_{o,\text{max}}}{2} = \frac{V_{DD}^2}{4 R_L} \]

\[I_{D,\text{ave}} = \frac{V_{DD}}{\pi R_L} \]

\[P_{DC} = V_{DD} I_{D,\text{ave}} = \frac{V_{DD}^2}{\pi R_L} \]

\[\eta_{\text{max}} = \frac{P_{o,\text{max}}}{P_{DC}} = \frac{\pi}{4} = 78 \% \]
Class-C Power Amplifiers

\[P_{RFout} \propto \frac{9 - \sin \theta}{1 - \cos(\frac{\theta}{2})} \]

\[\eta_{Drain} = \frac{P_{RFout}}{P_{DC}} = \frac{1}{4} \frac{9 - \sin \theta}{\sin(\frac{\theta}{2}) - \frac{\theta}{2} \cos(\frac{\theta}{2})} \]
Class-C Power Amplifiers

• Transistor Conducts Much Less Than Half of Cycle => Conduction Angle is Close to Zero Degree
• Higher Efficiency Compared to Class-A and Class-B
• Much Degraded Linearity
• Lower Output Power
Non-Linear Power Amplifiers

• Operate Active Devices as Switches Instead of Amplifying Linear Devices
• Highly Non-Linear
• Highest Efficiency (~ 100%)
• Most Suitable for Applications with Constant-Envelope Modulation
• For Linear Applications, Need Linearization Techniques
• Includes Class-E, Class-F
Non-Linear Power Amplifiers

• In Practice, Efficiency is Limited to ~ 60% Due to:
 • High Speed => Not Too Large Device Size => Finite Turn-On Resistance of the Switch
 • Finite Turn-On Transition Times
 • Low-Q Inductors => Off-Chip Inductors or Bond Wires
• For High Output Power, Device Stress is Critical
Class-E Power Amplifiers

- Switch mode
- Approaching 100% efficiency
Class-E Power Amplifiers

- Operate Active Device as Switch To Minimize Power Loss and Maximize Efficiency (~ 100%):
 - Small Transition Times Between ON and OFF
 - Small Voltage when Conducting Current
 - Small Current when Sustaining Large Voltage
 - Change of Voltage with Time is Close to Zero when Starting Conducting
- Parasitic Capacitance of Device Can Be Conveniently Absorbed in Cd
Class-E Power Amplifiers

\[
L_r = \frac{\pi V_{DD}^2 (\pi^2 - 4)}{2 \omega (\pi^2 + 4)}
\]

\[
C_d = \frac{P_o}{\pi \omega V_{DD}^2}
\]

\[
R_{opt} = 0.58 \frac{V_{DD}^2}{P_o}
\]
Class-F Power Amplifiers

- L_3C_3 tuned to the 2nd or 3rd harmonics
- Peak efficiency
 - 88% for 3rd harmonics peaking
 - 85% for 2nd harmonics peaking.
Class-F Power Amplifiers

• Employ Harmonics to Simulate a Square Waveform to Minimize Transition Times and thus to Reduce Loss
• A Parallel Tank $Lr3Cr3$ is Included to Obtain a Third-Order Harmonic and to Add to the Fundamental to Approximate a Square Wave
Challenges for CMOS PAs

• Trade-Off Among All Parameters
 • Speed
 • Device Size
 • Current and Output Power
 • Supply Voltage
 • Loss and Efficiency
 • Device Stress
• Low-Q On-Chip Inductors => Off-Chip Inductors or Bond Wires for Inductors in Resonant Tanks and Matching Network
Linearization Techniques

• Critical for Both High Efficiency and High Linearity
• Use Non-Linear Power Amplifiers (Class E and/or F) for High Efficiency
• Use Linearization Techniques to Improve Linearity:
 • Feed-Forward
 • Envelope Elimination and Restoration
Feed-Forward Techniques

The diagram shows a feed-forward technique with the following components:

- Input voltage: V_{in}
- Amplifier: A_p
- Feedback path with gain $1/A_p$
- Output voltage: V_o

The circuit includes a summing node with inputs V_{in}, V_x, and V_y, and an output node with V_o. The feedback path is used to adjust the gain and provide stability in the system.
Feed-Forward Techniques

\[v_o = v_x - A_v v_y \]

\[v_x = A_v v_{in} + \Delta v \]

\[v_y = \frac{A_v v_{in} + \Delta v}{A_v} - v_{in} = \frac{\Delta v}{A_v} \]

\[\therefore v_o = v_x - A_v v_y = A_v v_{in} \]
Feed-Forward Techniques

• Open Loop Without Feedback => Unconditional Stability
• Limited Linearity Improvement Due to:
 Gain Mismatches
 Phase Mismatches
 Errors of Subtractors
• Can Be Extended to Nested Feed-Forward Loops to Improve Linearity at A Cost of More Complexity
Envelope Elimination and Restoration (EER) Techniques
Envelope Elimination and Restoration (EER) Techniques

• Decompose Input Signal into An Envelope and a Phase-Modulated Signal, both of which are Amplified Separately and Recombined
• Constant-Envelope High-Frequency Phase-Modulated Component is Generated by “Eliminating” from Input’s Envelope Using a Limiter and then Applied as Input to a High-Efficiency Switching PA
Envelope Elimination and Restoration (EER) Techniques

- Non-Constant Low-Frequency Envelope Can Be Extracted by an Envelope Detector, Amplified by a Switching Supply Voltage, and then “Recombined” with RF Phase-Modulated Component By Modulating the PA’s Supply Voltage
- Achieve Linearization without Sacrificing Efficiency
Envelope Elimination and Restoration (EER) Techniques

• Operating Frequencies of the Two Paths are Quite Different
• Suffer from Phase and Gain Mismatches \(\Rightarrow \) Limited Linearity Improvement
• Power Consumption Can Be High \(\Rightarrow \) Power Efficiency Can Be Degraded